

Disaster Management Program
Open Platform for Emergency Networks

Instructions for Using the
Common Alerting Protocol (CAP) V1.1 Interface on the

Open Platform for Emergency Networks (OPEN)

Draft as of November 6, 2008

Version 0.5

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page ii

Revision History

Date Version Description Author
April 17, 2006 0.1 Initial draft Gary Ham

April 20, 2006 0.2 Technical updates Cathy (Yang) Liu

August 25,2006 0.3 Changes based on new capabilities Gary Ham

July 20, 2007 0.4 POC Updates Gary Ham

Nov 6, 2008 0.5 POC updates and updates related to
new FEMA Program Management

Gary Ham

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page iii

Table of Contents
1. Introduction ... 1

1.1. Purpose...1
1.2. Scope..1
1.3. Relationship to Other Documents..1
1.4. References..1

2. Before You Begin.. 2
3. Generating Service Classes and Beans from the WSDL .. 2
4. Connecting to the Web Service ... 3
5. Brief Explanations of Service Methods .. 4
6. More Examples and Contact Info .. 9
7. Coming Attractions... 9
8. Known Issues.. 9
9. Suggestions, Recommendations and Assistance... 10

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 1

1. Introduction
The Disaster Management Open Platform for Emergency Networks (DM-OPEN) provides
interoperability interfaces for sharing of alerts, situation reports, common operational picture
snapshots, and other emergency related information. These interfaces provide data structures
and rules of operations designed to enable information sharing between diverse systems, both
commercial and government. In general, these interfaces conform to open messaging standards
as defined through the Emergency Management Technical Committee sponsored by the
OASIS standards organization and through the National Information Exchange Model
(NIEM).

1.1. Purpose
This document is designed to help programmers and system designers to understand and
use OPEN web service interfaces. This is primarily a technical “how to” document
which will be updated whenever new releases are made within scope.

1.2. Scope
This document covers the interface that supports cross system alerting using the
Common Alerting Protocol (CAP) Version 1.1. Other interfaces are, or will be, covered
separately.

1.3. Relationship to Other Documents
This is one of a set of documents that will describe connections to different web services
interfaces. There will be a separate document written to cover each OPEN web service
that is separately defined using different Web Service Definition Language (WSDL).

1.4. References
The following documents were used to obtain source information or are referenced in
this document:

• OASIS Common Alerting Protocol, v1.1, OASIS Standard CAPV-1.1, October
2005

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 2

2. Before You Begin
[Note: If you have not connected to OPEN in the past, please email the DM-OPEN
Interoperability Coordinator at OPEN@eyestreet.com for an FAQ that explains the basics of
OPEN. The FAQ will explain how to become approved for OPEN connection and where to
find information on other OPEN offerings as well as this one.]

Location of WSDL for generating needed client side classes:

https://interop.cmiservices.org/axis/services/CAP1_1?wsdl

These instructions are Java specific information. If you are a .NET programmer, or use
another language capable of consuming WSDL, please use the above WSDL as appropriate,
then follow your normal methods for building a web service client. Read what follows below
to understand the methods that should be available to you and parameters that you will need to
employ.

The following instructions also assume that you understand the structure and usage of a CAP
1.1 message. For further reference please see the OASIS standard available from:

http://www.oasis-open.org/committees/download.php/14759/emergency-CAPv1.1.pdf

3. Generating Service Classes and Beans from the WSDL
Using the Axis libraries, run the WSDL2Java tool on the WSDL to generate the needed client
side files. The following example call uses some additional parameters to create a package
structure consistent with the OPEN server side. These parameters (NStoPkg) should not be
necessary, but may be helpful.

java org.apache.axis.wsdl.WSDL2Java
--NStoPkg http://dmi-services.org=org.cmis.interopserver.services.cap1_1
--NStoPkg http://dmi-services.org/beans=org.cmis.interopserver.beans
--NStoPkg urn:oasis:names:tc:emergency:cap:1.1=org.cmis.interopserver.beans.cap1_1
-v https://interop.cmiservices.org/axis/services/CAP1_1?wsdl

Assuming your classpath was correctly set, running the above WSD2Java call will generate
the following package and class structure:

org.cmis.interopserver.beans.SimpleCOG.java
org.cmis.interopserver.beans.cap1_1.Alert.java
org.cmis.interopserver.beans.cap1_1.Area.java
org.cmis.interopserver.beans.cap1_1.Category.java
org.cmis.interopserver.beans.cap1_1.Certainty.java
org.cmis.interopserver.beans.cap1_1.EventCode.java
org.cmis.interopserver.beans.cap1_1.Geocode.java

org.cmis.interopserver.beans.cap1_1.Info.java
org.cmis.interopserver.beans.cap1_1.MsgType.java
org.cmis.interopserver.beans.cap1_1.Parameter.java

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 3

org.cmis.interopserver.beans.cap1_1.Resource.java
org.cmis.interopserver.beans.cap1_1.ResponseType.java
org.cmis.interopserver.beans.cap1_1.Scope.java
org.cmis.interopserver.beans.cap1_1.Severity.java
org.cmis.interopserver.beans.cap1_1.Status.java
org.cmis.interopserver.beans.cap1_1.Urgency.java
org.cmis.interopserver.services.cap1_1.CAP1_1.java
org.cmis.interopserver.services.cap1_1.CAP1_1Service.java
org.cmis.interopserver.services.cap1_1.CAP1_1ServiceLocator.java
org.cmis.interopserver.services.cap1_1.CAP1_1SoapBindingStub.java

With these classes you can retrieve and post CAP 1.1 messages by executing following
instructions:

4. Connecting to the Web Service
Run the following class (call it from a main function and pass in your user id, password and
COG id) to prove that you can establish a connection. A return string of “pong” proves that
you are using appropriate credentials and that the service is alive. It is always good to do a
ping to check your connection before attempting other functionality. It isolates any connection
errors from other possible problems.

import java.net.*;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import org.cmis.interopserver.services.cap1_1.CAP1_1Service;
import org.cmis.interopserver.services.cap1_1.CAP1_1ServiceLocator;
import org.cmis.interopserver.services.cap1_1.CAP1_1SoapBindingStub;

public class SimplePingExample {

public SimplePingExample (String userId, String pwd, String cogId){
 URL svcURL;
 CAP1_1Service service = new CAP1_1ServiceLocator();
 CAP1_1SoapBindingStub cap;

 try {
 svcURL = new URL("https://interop.cmiservices.org/axis/services/CAP1_1");
 System.out.println("Invoking service at " + svcURL.toString());
 cap = (CAP1_1SoapBindingStub) service.getCAP1_1(svcURL);
 cap.setUsername(cogId+"/"+userId);
 cap.setPassword(pwd);
 try {
 System.out.println(cap.ping());
 } catch (RemoteException e1) {
 e1.printStackTrace();
 }
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (ServiceException e) {
 e.printStackTrace();
 }
 }

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 4

}

5. Brief Explanations of Service Methods
Including the ping() method, you now have access to fifteen proven CAP 1.1 service methods
that allow access to the DM-OPEN interoperability server:

a. To ping the service and ensure that it is up and running:
String ping() throws java.rmi.RemoteException;

The ping method returns the string “pong” if you are able to connect to the web
service. It is used simply to verify that the service is up and running and that the has
been successfully authenticated.

b. To get your COG in SimpleCOG format (id as long, name as String):
SimpleCOG getMyCog() throws java.rmi.RemoteException;

The getMyCog method returns an object of type SimpleCOG which contains the
connection cogId as a long and the name of the COG as a String. (A SimpleCOG
object is an instance of the SimpleCOG class generated from WSDL2Java). This is not
a particularly useful function on operational basis, but its simplicity can be used to
determine whether database connectivity is alive before attempting to diagnose more
complicated system connection issues.

c. To get all of the COGs that you are allowed to post to in an array of type
SimpleCOG:

 SimpleCOG[] getCogs() throws java.rmi.RemoteException;

From the returned array, you may choose the target for your Alert posts. The getCogs
method returns an array of SimpleCOG objects where each object includes a cogid as a
long and the name of the COG as a String. Each SimpleCOG instance represents an
organization that can retrieve an OPEN posted alert. For testing and initial
development, OPEN interoperability partners are given passwords and ids in COG
1737, the OPEN Interoperability COG. For members of COG 1737, this method will
return only two SimpleCOGs that have been set up expressly for test purposes (COG
1000 – the DMI Services Project Team and COG 2 – OPEN Interoperability COG 2).
When testing is sufficient and a vendor or project has been sponsored by a vetted
emergency organization, fully operational COGs can be set up for each sponsor. At
that point, this method will retrieve an array of more than 2000 available COGs
sponsored by organizations throughout the United States (and a couple of location in
Canada). As a developer, you could make this a dynamically built pick list for your
users. Since a list of this size may not be practical for your users, you can run this
query and manually pick from those of interest to your users to build a static pick list
for your users. (Note: See coming attractions below. There are plans to remedy this
shortcoming.)

d. To post an Alert to one or more OPEN COGs:

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 5

void postCAPAlert(Alert alertObj, SimpleCOG[] simpleCOGs)
throws java.rmi.RemoteException;

The postCapAlert method lets you post an alert to one or more different organizations
where each organization is represented by its COG. The first parameter is an instance
of the Alert object generated from the WSDL. This instance must be populated
according to CAP 1.1 schema. The second parameter is an array of SimpleCOG (see
3.c above) where each SimpleCOG represents an organization that you are allowing to
retrieve the alert. Do NOT post to your own COG (do NOT include your own COG in
the second parameter). It will raise errors. (Note: this differs from the EDXL DE
implementation where posting to your own cog is required for retrieval of your own
posted messages). An error will also be raised if the combination of <sender> and
<identifier> coincides with an already posted Alert. Under normal circumstances, this
method does not return anything; if no error is returned then the posting has succeeded.

e. To post an Alert globally across the entire OPEN network:
void postCAPAlert(Alert alertObj) throws

java.rmi.RemoteException;

The postCAPAlert method is used to post an Alert globally across the system. Once
posted, the Alert will be accessible by users of all COGs (including the sender's) via
the "getCAPAlertGlobal" methods. This method does not return anything; if no error
is returned then the posting has succeeded. Posting with this method will allow
retrieval by any COG in the DM environment.

f. To retrieve a particular Alert with known identifier and sender from the OPEN
interface:

Alert getCAPAlert(String senderIdentifier) throws
java.rmi.RemoteException;

The getCAPAlert method returns a specific CAP1.1 Alert object based upon the
combined value of the <sender> and <identifier> tags. The String argument is colon
delimited string consisting of the identifier and the sender (e.g.,
“hamg@battelle.org” + “:“ + “DM001567” or “sender:identifier)”. (Note:
This particular method fails when a colon (“:”) is an integral part of the identifier or
sender. It is likely that the delimiter will be changed to a character that cannot be used
as part of the identifier or sender fields in the next release). You can only retrieve an
alert using this method if the alert was posted by your COG, the alert was expressly
posted to your COG by a user member of a different COG, or the Alert was posted
globally across the system. If the "senderIdentifier" does not correspond to a CAP Alert
in the DMIS system, an empty value (NULL), will be returned. (done-gh)

g. To retrieve all Alerts posted to or from your COG later than time specified in the
<sent> field:

Alert[] getCAPAlerts(Calendar dateTime) throws
java.rmi.RemoteException;

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 6

The getCAPAlerts method returns an array of CAP1.1 Alert objects where time
specified in each Alert object's <sent> tag is later than the Java Calendar argument.
This includes Alerts that have been posted directly to the caller's COG, Alerts sent by
the caller, as well as those that have been posted globally. The Alerts are returned in
chronological order, from newest to oldest. If the date is invalid, an error is returned. If
there are no alerts since that date-time, an empty list is returned.

This method allows retrieving systems to choose not to retrieve older alerts, making the
retrieval process somewhat less onerous. Users of the getCAPAlerts(Calendar) method
should still allow some overlap in time from most recent retrieval when choosing the
Calendar value for subsequent retrievals. This overlap is needed because relevant
messages can be posted to OPEN at some time after the original message creation time
and OPEN does not alter the originating <sent>tag value, regardless of the actual post
time. Of course, this also means duplicate Alert retrievals should be checked for and
discarded as appropriate.

h. To retrieve all Alerts posted to or from your COG later than the date and time
specified by the Calendar value:

Alert[]getCAPAlertsByPostedDate(Calendar dateTime) throws
java.rmi.RemoteException;

The getCAPAlertsByPostedDate method returns an array of CAP1.1 Alert
objects posted to the DM OPEN service after the time specified in the Java Calendar
argument. This includes Alerts that have been posted directly to the caller's COG,
Alerts sent by the caller, as well as those that have been posted globally. The Alerts are
returned in chronological order, from newest to oldest. If the date is invalid, an error is
returned. If there are no alerts since that date-time, an empty list is returned.

This method is almost identical to getCAPAlerts(Calendar) (paragraph 5g above)
except that the date-time value is being compared to the actual time that Alert is posted
to the DM OPEN server instead of the sent field in the Alert.

i. To retrieve all Alerts posted to the global COG later than the date and time
specified by the Calendar value:

Alert[]getCAPAlertsGlobalByPostedDate(Calendar dateTime)
throws java.rmi.RemoteException;

The getCAPAlertsGlobalByPostedDate method returns an array of CAP1.1 Alert
objects globally posted to the DM OPEN service after the time specified in the Java
Calendar argument. This includes Alerts that have been sent by any COG for
distribution to the global COG in the DM OPEN environment. The Alerts are returned
in chronological order, from newest to oldest. If the date is invalid, an error is returned.
If there are no alerts since that date-time, an empty list is returned.

This method can be used to get alerts that have been designated as global in scope
separately from those posted individually to the retriever’s COG.

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 7

j. To retrieve all Alerts posted to the global COG with a <sent> field value later
than the date and time specified by the Calendar value:

Alert[]getCAPAlertsGlobalBySentDate(Calendar dateTime) throws
java.rmi.RemoteException;

The getCAPAlertsGlobalBySentDate method returns an array of CAP1.1 Alert
objects globally posted to the DM OPEN service where time specified in each Alert
object's <sent> tag is later than the Java Calendar argument. This includes Alerts that
have been posted by any COG for distribution to all COGs in the DM OPEN
environment. The Alerts are returned in chronological order, from newest to oldest. If
the date is invalid, an error is returned. If there are no alerts since that date-time, an
empty list is returned.

This method works the same way as getCAPAlertsGlobalByPostedDate except that the
comparison is made to the <sent> value in the CAP message instead of the actual time
that the message is posted to DM OPEN.

k. To retrieve all Alerts posted to the caller on DM OPEN later than the date and
time specified by the Calendar value:

Alert[]getMyCogsAlertsByPostedDate(Calendar dateTime) throws
java.rmi.RemoteException;

The getMyCogsAlertsByPostedDate method returns an array of CAP1.1 Alert
objects posted to the caller after the time specified in the Java Calendar argument. The
time argument is being compared to the time each Alert is posted to the DM OPEN
service. This method returns only those Alerts that have been expressly posted to the
polling COG by another DM OPEN COG. The Alerts are returned in chronological
order, from newest to oldest. If the date is invalid, an error is returned. If there are no
alerts since that date-time, an empty list is returned. Global Alerts are not returned by
this method. Neither are Alerts that were sent by the caller.

This method can be used for finer grained retrieval, since Alerts posted by the polling
COG and global Alerts are not retrieved. It works exactly the same as the
getCAPAlertsByPostedDate function except that only Alerts posted to the polling COG
are returned.

l. To retrieve all Alerts posted to the caller with a <sent> field value later than the
date and time specified by the Calendar value:

Alert[]getMyCogsAlertsBySentDate(Calendar dateTime) throws
java.rmi.RemoteException;

The getMyCogsAlertsBySentDate method returns an array of CAP1.1 Alert
objects posted to the caller where time specified in each Alert object's <sent> tag is
later than the Java Calendar argument. This only includes Alerts posted to the polling
COG by another DM OPEN COG. The Alerts are returned in chronological order, from
newest to oldest. If the date is invalid, an error is returned. If there are no alerts since
that date-time, an empty list is returned. Neither global Alerts nor Alerts sent by the
polling COG are returned.

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 8

This method can be used for finer grained retrieval, since Alerts sent by the polling
COG and global Alerts are not retrieved. It works exactly the same as the
getCAPAlerts function except that only Alerts specifically identified for retrieval by
the polling COG are returned.

m. To retrieve all Alerts sent by the caller to DM OPEN later than the date and time
specified by the Calendar value:

Alert[]getAlertsSentByPostedDate(Calendar dateTime) throws
java.rmi.RemoteException;

The getAlertsSentByPostedDate method returns an array of CAP1.1 Alert objects sent
by the caller after the time specified in the Java Calendar argument. The time argument
is being compared to the time each Alert is posted to the DM OPEN service. This
includes only those Alerts that have been expressly posted by the polling COG to other
COGs and/or the global COG. The Alerts are returned in chronological order, from
newest to oldest. If the date is invalid, an error is returned. If there are no alerts since
that date-time, an empty list is returned. Alerts that were posted to the polling COG by
other COGS are not retrieved by this method.

This method allows a COG to retrieve messages it sent to others. It works exactly the
same as the getCAPAlertsByPostedDate function except that only Alerts sent by the
polling COG are returned.

n. To retrieve all Alerts sent by the caller with a <sent> field value later than the
date and time specified by the Calendar value:

Alert[]getAlertsSentBySentDate(Calendar dateTime) throws
java.rmi.RemoteException;

The getAlertsSentBySentDate method returns an array of CAP1.1 Alert objects sent by
the caller where time specified in each Alert object's <sent> tag is later than the Java
Calendar argument. This includes only those Alerts that have been sent by the polling
COG to other COGs and/or the global COG. The Alerts are returned in chronological
order, from newest to oldest. If the date is invalid, an error is returned. If there are no
alerts since that date-time, an empty list is returned. Alerts that were posted to the
polling COG from other COGs are not retrieved by this method.

This method allows a COG to retrieve those messages that it has sent to others. It
works exactly the same as the getCAPAlerts function except that only Alerts sent from
the polling COG are returned.

o. To retrieve the current OPEN server time in Calendar format:
 Calendar getServerTime()throws java.rmi.RemoteException

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 9

Retrieves the current time on the server; useful for time-synching to ensure that
getCAPAlertsByPostedDate() is accurate. Note that current server time is also returned
as a SOAP header with each request; this method is here only for convenience.

6. More Examples and Contact Info
Sample code is available. E-mail the OPEN Interoperability Coordinator at
OPEN@eyestreet.com for some WSDL generated classes, appropriate Axis libraries, and
some test drive code to get you started. The Interoperability Coordinator is also your first
point-of-contact for any problems related to programming issues related to OPEN.

7. Coming Attractions
a. getCogs(geography) – There will soon be a version of getCogs using a circle structure

(point and radius) or similar geographic reference that will limit the number of COGs
retrieved by this method. This will make the creation of dynamic posting pick lists
more effective. Date of release TBD (near future).

b. COG Profile – More complete COG information is needed if user systems wish any
form of dynamic creation of COG posting pick lists. This requirement is still in the
analysis phase.

8. Known Issues
a. drefUri – The drefUri tag is designed to contain an embedded base-64 encoded mime

type structure. This capability is not implemented at this time. Users may substitute a
URL where the appropriate content can be referenced.

b. Circular post bug – A posted alert with identical <sender> and <identifier> is rejected
as duplicate and an exception. In most case, this is appropriate. However, if the Alert
is already in the system for COG A where COG A represents a rule-based distribution
activity, COG A is prevented from using those rule to post the same alert back to COG
B because the alert is already in the DM OPEN system. A temporary work around
would be for COG B to slightly alter the identifier and repost. The proper solution will
be to add COG B to the list of COGs posted to without adding a new alert to the
system. This would allow COG B to retrieve the alert in an unaltered state, without
duplicating the data in the database.

Using Common Alerting Protocol V1.1 on Open Platform Emergency Networks November 6, 2008

Disaster Management Open Platform for Emergency Networks Page 10

9. Suggestions, Recommendations and Assistance
a. Please send your suggestions, recommendations for improvement, etc. by e-mail to

help@cmiservices.org. Be sure to specify that you are referencing the OPEN Interop
CAP1.1 interface. Be specific. Remember that resources are limited and that the DM
Program emphasizes the use of open standards for data and uses a directed distribution
(user chooses recipients) sharing paradigm.

b. Initial programming and connection assistance can be provided through our OPEN
Systems Interoperability Coordinator, Yohannes Tilahun (tilahuny@battelle.org).

