

Disaster Management Program
Open Platform for Emergency Networks

Instructions for Using the
Emergency Data Exchange Language (EDXL)

Distribution Element (DE) V1.0 Interface on the
Open Platform for Emergency Networks (OPEN)

Draft as of November 6, 2008

Version 0.3

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page ii

Revision History

Date Version Description Author
August 25, 2006 0.1 Initial draft Gary Ham

July 20, 2007 0.2 POC Updates Gary Ham

Nov 6, 2008 0.3 POC updates and updates related to
new FEMA Program Management

Gary Ham

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page iii

Table of Contents
1. Introduction ... 1

1.1. Purpose...1
1.2. Scope..1
1.3. Relationship to Other Documents..1
1.4. References..1

2. Before You Begin.. 2
3. Generating Service Classes and Beans from the WSDL .. 2
4. Connecting to the Web Service ... 2
5. Brief Explanations of Service Methods .. 3
6. Interface differences between the EDXL DE and CAP1.1 as implemented in DM-OPEN5
7. More Examples and Contact Info .. 6
8. Coming Attractions... 6
9. Known Issues.. 6
10. Suggestions, Recommendations and Assistance... 7

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 1

1. Introduction
The Disaster Management Open Platform for Emergency Networks (DM-OPEN) provides
interoperability interfaces for sharing of alerts, situation reports, common operational picture
snapshots, and other emergency related information. These interfaces provide data structures
and rules of operations designed to enable information sharing between diverse systems, both
commercial and government. In general, these interfaces conform to open messaging standards
as defined through the Emergency Management Technical Committee sponsored by the
OASIS standards organization and through the National Information Exchange Model
(NIEM).

1.1. Purpose
This document is designed to help programmers and system designers to understand and
use OPEN web service interfaces. This is primarily a technical “how to” document
which will be updated whenever new releases are made within scope.

1.2. Scope
This document covers the interface that supports cross system information exchange
using the Emergency Data Exchange Language (EDXL) Distribution Element (DE)
Version 1.0, and differences between EDXL DE and CAP 1.1. Other interfaces are, or
will be, covered separately.

1.3. Relationship to Other Documents
This is one of a set of documents that will describe connections to different web services
interfaces. There will be a separate document written to cover each OPEN web service
that is separately defined using different Web Service Definition Language (WSDL).

1.4. References
The following documents were used to obtain source information or are referenced in
this document:

• OASIS Emergency Data Exchange Language (EDXL) Distribution Element, v1.0,
OASIS Standard EDXL-DE v1.0, 1 May 2006

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 2

2. Before You Begin
[Note: If you have not connected to OPEN in the past, please email the DM-Open
Interoperability Coordinator at OPEN@eyestreet.com) for an FAQ that explains the basics of
OPEN. The FAQ will explain how to become approved for OPEN connection and where to
find information on other OPEN offerings as well as this one.]

Location of WSDL for generating needed client side classes:

http://interopdev.cmiservices.org/axis/services/EDXLDistributionElement?wsdl

These instructions are Java specific information. If you are a .NET programmer, or use
another language capable of consuming WSDL, please use the above WSDL as appropriate,
following your normal methods for building a web service client. Read what follows below to
understand the methods that should be available to you and parameters that you will need to
employ.

This instruction also assumes that you understand the structure and usage of the EDXL
Distribution Element message structure. For further reference please see the OASIS standard
available from:

http://docs.oasis-open.org/emergency/edxl-de/v1.0/EDXL-DE_Spec_v1.0.pdf

3. Generating Service Classes and Beans from the WSDL
Using the Axis libraries, run the WSDL2Java tool on the WSDL to generate the 4 client
classes.

java org.apache.axis.wsdl.WSDL2Java

-v http://interopdev.cmiservices.org/axis/services/EDXLDistributionElement?wsdl

Running the above WSD2Java call will generate 4 client classes in package org.dmi_services:

EDXLDistributionElement.java
EDXLDistributionElementService.java
EDXLDistributionElementServiceLocator.java
EDXLDistributionElementSoapBindingStub.java

With these classes you can retrieve and post EDXL-DE V1.0 messages by executing following
instructions:

4. Connecting to the Web Service
Use the following Code snippet to establish the connection (Note: This is code extracted from the
available demo code. It was taken out of a larger class and is not intended to be a complete
functioning class on its own.) :

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 3

// needed imports
import java.net.*;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import org.dmi_services.EDXLDistributionElementService;
import org.dmi_services.EDXLDistributionElementServiceLocator;
import org.dmi_services.EDXLDistributionElementSoapBindingStub;

// beginning of code snippet
EDXLDistributionElementService service = new
EDXLDistributionElementServiceLocator();
 URL svcURL;
 EDXLDistributionElementSoapBindingStub de;

 try {
 // set your end point
 svcURL = new URL
("http://interopdev.cmiservices.org/axis/services/EDXLDistributionElement");
 System.out.println("Invoking service at " + svcURL.toString());
 de =(EDXLDistributionElementSoapBindingStub)
service.getEDXLDistributionElement(svcURL);
 //set cog id and user id
 de.setUsername(cogId+"/"+userId);
 //set your password
 de.setPassword(password);
 } catch (MalformedURLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ServiceException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

5. Brief Explanations of Service Methods
Including the getSeverTime() method, you now have access to six EDXL Distribution Element
service methods:

a. To retrieve the current OPEN server time in Calendar format:
 String getServerTime()throws java.rmi.RemoteException

Retrieves the current time on the server as an ISO 8601 compliant String; useful for
time-synching to ensure that use of methods below based on posted date are handled
correctly. This method is also useful for verifying that the service is up and running
and that your user id and password have been successfully authenticated.

b. To post an EDXL DE message:
String postEdxlDEMessage(long[] cogIds, String EDXLDEmessage)
throws java.rmi.RemoteException

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 4

This method posts a DE for retrieval by one or more COGs as identified by their
CogId. CogIds is an array of long where each long is the identifier of an OPEN or
DMIS Collaborative Operations Group (COG). If your are posting from the
Interoperability COG (1737) you will only be able to post to your COG and to two
other COGs (2 – a second interoperability COG, and 1000 – the DMIS project Team
COG). This allows testing and development without disrupting operational DMIS
COGS. Once a system is used operationally at a customer (or custom production) site,
you will have the ability to post to more than 2000 COGS in the DM OPEN
environment.

Within DM-OPEN the EDXL message is treated as a simple (often very large) string.
The string must validate against the EDXL DE schema (.xsd file), otherwise an
exception may be returned. The interface does not validate content elements beyond
the DE schema. Connectors at both ends are relied upon to handle any content
processing that is required. The OPEN interfaces are “content agnostic.”

c. To retrieve a particular EDXLDE message with known identifier and sender from
the OPEN interface:

String getEdxlDEMessage(String identifierAndSender) throws
java.rmi.RemoteException

This method returns a specific EDXL DE message based upon the combined value of
the <identifier> and <sender> tags. The String argument is space delimited 2 value
string of identifier and sender (e.g., “DM001567” + “ “ + “hamg@battelle.org”).
Remember the EDXL DE spec requires that identifier and sender contain no spaces. A
space delimiter should therefore work for retrieval of valid EDXL DE messages.

d. To retrieve all DE messages posted to your COG:
String[] getAllEdxlDEMsgs(long cogId) throws
java.rmi.RemoteException;

This method returns an array Strings representing all EDXL Messages posted to the
COG represented by the cogId parameter. Each string is an EDXLDEMessage in its
entirety. The EDXL message is complete and unformatted (no spaces or carriage
returns) other than its tags and content. It should be in perfect condition parsing using
any appropriate XML parsing method (e.g., Xpath query, SAX, or DOM). The current
interface does not yet offer querying capability based upon content other than the value
of the <sent> tag (see below). Additional query capability will be gradually
introduced in later interfaces and in production. In the meantime, connecting systems
will need to filter duplicates and unwanted items from the returned array using Xpath
or similar techniques.

e. To retrieve all EDXL-DE messages posted to your COG later than the date and
time specified by the DateTime parameter value:

String[] getEdxlDEMsgsByPostedDate(String postDateTime) throws
java.rmi.RemoteException;

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 5

The getEdxlMsgByPostedDate method returns an array of Strings where each string is
a complete EDXL DE message with its content. It returns all messages that were
posted to your COG after the time represented by the postDateTime parameter. Note
that the postDateTime parameter is a string in ISO8601 format (e.g., “YYYY-MM-
DDTHH:MM:SS”).

This method allows retrieving systems to choose not to retrieve older messages,
making the retrieval process somewhat less onerous. It is designed to work in tandem
with getServerTime() as a way of getting only relevant postings. Because perfect
synchronization of servers may be difficult across the distributed architecture, user
systems may still want to allow some overlap in time from most recent retrieval when
choosing the 8601 value for subsequent retrievals. Of course, this also means duplicate
message retrievals should be checked for and discarded as appropriate.

f. To retrieve all EDXL-DE messages posted with a <sent> field value later than the
date and time specified by the DateTime parameter value::

String[] getEdxlDEMsgsBySentDate(String sentDateTime) throws
java.rmi.RemoteException;

The getEdxlMsgBySentDate method returns an array of Strings where each string is a
complete EDXL DE message with its content. It returns all messages that were posted
to your COG where the value of the <sent> tag is later than the time represented by the
sentDateTime parameter. Note that the sentDateTime parameter (like the value of the
<sent> tag) is a string in ISO8601 format (e.g., “YYYY-MM-DDTHH:MM:SS”).

User systems should allow some overlap in time from most recent retrieval when
choosing the <sent> value for subsequent retrievals. This overlap is needed because
relevant messages can be posted to OPEN at some time after the original message
creation time and OPEN does not alter the originating <sent>tag value, regardless of
the actual post time. Of course, this also means duplicate message retrievals should be
checked for and discarded as appropriate.

6. Interface differences between the EDXL DE and CAP1.1 as
implemented in DM-OPEN
While the basic method of connectivity is the same for all DM-OPEN interfaces, there are
some functional differences between the CAP 1.1 interface and the EDXL DE interface which
should be understood:

a. The CAP1.1 interface is an object-oriented interface that uses SOAP encoded Alert
objects. While Alert objects are more efficient in some ways, .NET clients may encounter
a “jagged arrays” problem with their retrieval paradigm. A separate HTTP retrieval
protocol was built for this purpose. The EDXL DE interface returns an array of String and
is fully compatible with .NET clients using Microsoft’s client generation tools for
consumption of its WSDL.

b. CAP1.1 uses an object as its date and time retrievals argument. The .NET DateTime class
does not store time zone in the same fashion as the Java Calendar class. To assure

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 6

consistency across applications, the EDXL DE implementation uses a specifically
formatted ISO8601 string (the same format as specified in the CAP and EDXL standards
for data inside the message) for its parameters and does all appropriate calculations
internally.

c. The CAP 1.1 interface does not allow a COG to send an alert to itself but provides the
ability to retrieve alerts it sent out as well as alerts posted to it in a variety of ways. The
DE interface allows a DE to be self-posted, but only retrieves messages that have been
posted to the login COG.

d. The CAP 1.1 posts to an Array of SimpleCOG object and provides separate retrieval
access to allowed COGs. The DE is posted to an array of cogid, which must be known in
advance. The cogids used have the same values as found in corresponding SimpleCog
objects. DE builders needing dynamic access will need to access methods on the CAP1.1
or Tactical Information Exchange (TIE) interfaces to access SimpleCOG interface.

e. The string for retrieving a specific alert in CAP is the <identifier> and <sender> delimited
by a colon. The string for retrieving a specific DE instance is <identifier> and <sender>
delimited by a space.

7. More Examples and Contact Info
Sample code is available. E-mail the OPEN Systems interoperability Coordinator at
OPEN@eyestreet.com for some WSDL generated classes, appropriate Axis libraries, and
some test drive code to get you started. This e-mail address is also your first point-of-contact
for any problems related to programming issues related to OPEN.

8. Coming Attractions
a. Content specific and/or tag specific query capability. This requirement has not yet

begun formal analysis. User input is welcome.
b. COG Profile – More complete COG information is needed if user systems wish any

form of dynamic creation of COG posting pick lists. This requirement is still in the
analysis phase.

9. Known Issues
a. Circular post bug – A posted alert with identical <sender> and <identifier> is rejected

as duplicate and an exception. In most case, this is appropriate. However, if the DE
message is already in the system for COG A where COG A represents a rule-based
distribution activity, COG A is prevented from using those rule to post the same
message back to COG B because the alert is already in the DM OPEN system. A
temporary work around would be for COG B to slightly alter the identifier and repost.
A future solution will be to add COG B to the list of COGs posted to without adding a
new message to the system. This would allow COG B to retrieve the alert in an
unaltered state, without duplicating the data in the database.

Using EDXL Distribution Element V1.0 on Open Platform Emergency Networks November 6, 20088

Disaster Management Open Platform for Emergency Networks Page 7

10. Suggestions, Recommendations and Assistance
a. Please send your suggestions, recommendations for improvement, etc. by e-mail to

help@cmiservices.org. Be sure to specify that you are referencing the OPEN Interop
CAP1.1 interface. Be specific. Remember that resources are limited and that the DM
Program emphasizes the use of open standards for data and uses a directed distribution
(user chooses recipients) sharing paradigm.

b. Initial programming and connection assistance can be provided through our OPEN
Systems Interoperability Coordinator at OPEN.eyestreet.com.

